

Advances in FMP-Met Project: MET Processing and Trajectory Prediction

Overview of FMP-Met Project

Overall objective

Provide the FMP with an intuitive and interpretable probabilistic assessment of the impact of convective weather on operations, to allow better-informed decision making.

Context of use

FMP process under adverse weather (thunderstorms), for enroute and TMA traffic, for a time horizon of 8 hours, which requires multiple MET data input.

Challenge

Integrating different probabilistic MET products: probabilistic nowcasts, regional-coverage ensemble prediction systems (EPS), and global-coverage EPS.

Uncertainty management

Ensemble Weather Forecasting is used to quantify MET forecast uncertainty: the uncertainty is defined by scenarios.

Several sources of MET forecast uncertainty are considered: wind and air temperature (provided by EPSs), exposure to convection (provided by EPSs), and storm cell location (provided by probabilistic nowcasts).

Other sources of uncertainty considered in FMP-Met: the **operational uncertainty** linked to the storm avoidance strategy, and the **uncertainty in the take-off time** for those flights that have not yet departed.

Progress made

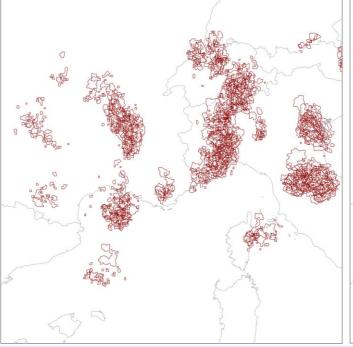
During the 1st year of the project, we have developed the **computing infrastructure needed** to perform the traffic analysis required to support FMPs:

- A probabilistic (ensemble) nowcast.
- A unified framework for **trajectory prediction** with a time horizon of 8 hours.

Technical enabler #1: Probabilistic storm Nowcast

Main features

It takes rain data observations: **OPERA radar data** from EUMETNET and **Satellite data** from EUMETSAT

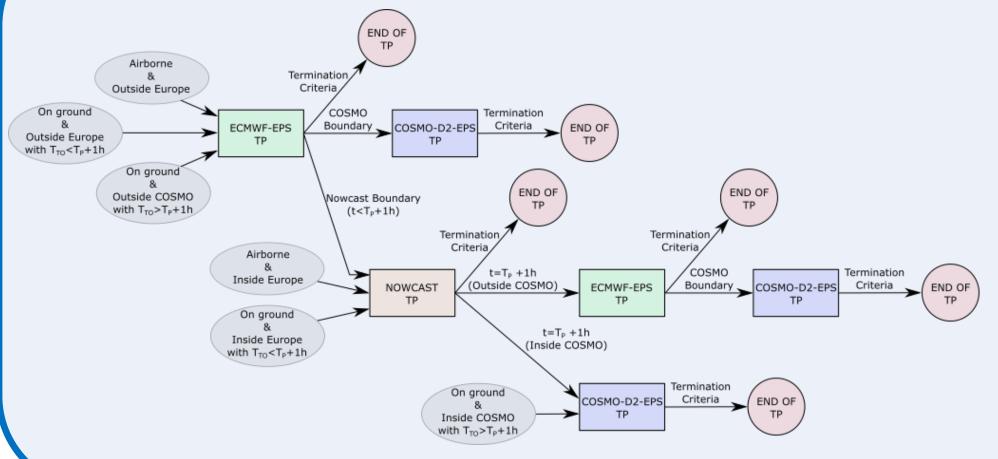

STEPS method is applied to generate an ensemble of **15 members**, each of them containing storm cells polygons with a **2 km horizontal resolution**.

A new prediction is generated every **15 minutes**, which ranges from M+0 up to M+90 minutes, with **15-minute-apart steps**.

From the probabilistic nowcast,

- 1. storm cells are identified considering an appropriate reflectivity threshold and
- 2. no-fly regions with an appropriate safety margin are generated.

Example: 27-07-2019, 13:30 UTC analysis time, + 60 min forecast


Storm cells. Reflectivity > 38 dBZ (all members)

No-fly regions. Safety margin 13.5 NM (all members)

Technical enabler #2: Trajectory prediction

Objective: Perform the probabilistic prediction of the aircraft trajectory, under adverse weather, for the next 8 hours.

Decision tree for classification and transition between TPs

Methodology: Unified framework for trajectory prediction which uses two different trajectory predictors (TP): Short-term TP, based on nowcast forecasts, and longterm TP, based on EPS forecasts.

Key elements of the methodology:

- 1. Classification of flights.
- 2. Clustering of final conditions.
- 3. Transition between TPs.

Next steps & Conclusions

Traffic analysis (demand, complexity, capacity reduction, congestion) and **FMP-Met concept assessment** are being done during the 2nd year of the project. FMP-Met brings a new step to integrate the MET uncertainty in ATM decision support tools.

This project has received funding from the SESAR Joint Undertaking under grant agreement No 885919 under European Union's Horizon 2020 research and innovation programme. The information herein reflect the author's view only. SJU shall not be responsible for any use that may be made of the information contained herein.

This project has been prepared by the FMP-Met Project Coordinator on behalf of the Project Consortium:

Damián Rivas, Antonio Franco, Alfonso Valenzuela drivas@us.es

https://fmp-met.com/

@FmpMet

www.linkedin.com/groups/12411134/

